Ruin Probability in Compound Poisson Process with Investment

نویسندگان

  • Yong Wu
  • Xiang Hu
چکیده

We consider that the surplus of an insurer follows compound Poisson process and the insurer would invest its surplus in risky assets, whose prices satisfy the Black-Scholes model. In the risk process, we decompose the ruin probability into the sum of two ruin probabilities which are caused by the claim and the oscillation, respectively. We derive the integro-differential equations for these ruin probabilities these ruin probabilities. When the claim sizes are exponentially distributed, third-order differential equations of the ruin probabilities are derived from the integro-differential equations and a lower bound is obtained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hyperexponential Approximation to Finite-Time and Infinite-Time Ruin Probabilities of Compound Poisson Processes

This article considers the problem of evaluating infinite-time (or finite-time) ruin probability under a given compound Poisson surplus process by approximating the claim size distribution by a finite mixture exponential, say Hyperexponential, distribution. It restates the infinite-time (or finite-time) ruin probability as a solvable ordinary differential equation (or a partial differential equ...

متن کامل

Ruin Probabilities and Penalty Functions with Stochastic Rates of Interest

Assume that a compound Poisson surplus process is invested in a stochastic interest process which is assumed to be a Lévy process. We derive recursive and integral equations for ruin probabilities with such an investment. Lower and upper bounds for the ultimate ruin probability are obtained from these equations. When the interest process is a Brownian motion with drift, we give a unified treatm...

متن کامل

Periodicity and Ruin Probabilities for Compound Non - Homogeneous Poisson Processes

Periodicity and Ruin Probabilities for Compound Non-Homogenous Poisson Processes Compound non-homogenous Poisson processes with periodic claim intensity rates are stiidied in this work. A risk process related to a short term periodic environment and the periodicity for its compound claim counting process are discussed. The ruin probabilities of compo~md non-homogenous Poisson processes with per...

متن کامل

A Hyperexponential Approximation to Finite- and Infinite-time Ruin Probabilities of Compound Poisson Processes

This article considers the problem of evaluating infinite-time (or finite-time) ruin probability under a given compound Poisson surplus process. By approximating the claim size distribution by a finite mixture exponential, say Hyperexponential, distribution. It restates the infinite-time (or finitetime) ruin probability as a solvable ordinary differential equation (or a partial differential equ...

متن کامل

Ruin in the Perturbed Compound Poisson Risk Process under Interest Force

In this paper, we study ruin in a perturbed compound Poisson risk process under stochastic interest force and constant interest force. By using the technique of stochastic control, we show that the ruin probability in the perturbed risk model is always twice continuously differentiable provided that claim sizes have continuous density functions. In the perturbed risk model, ruin may be caused b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Applied Mathematics

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012